Genistein arrests cell cycle progression at G2-M.

نویسندگان

  • Y Matsukawa
  • N Marui
  • T Sakai
  • Y Satomi
  • M Yoshida
  • K Matsumoto
  • H Nishino
  • A Aoike
چکیده

Genistein, an isoflavone, is a specific inhibitor of tyrosine kinase and topoisomerase II. However, its effect on cell growth is unknown. Therefore, we examined the effects of genistein on cell growth and cell cycle progression and compared its effects with other flavonoids. Genistein inhibited in a dose-dependent manner the growth of HGC-27 cells derived from human gastric cancer. Flow-cytometric analysis showed that genistein almost completely arrested the cell cycle progression at G2-M. This effect was reversible when genistein was removed from the culture medium. In contrast, other flavonoids such as flavone, luteolin, and the structurally similar daidzein arrested the cell cycle at G1. Consistent with the flow-cytometric analysis, microscopic observation showed that genistein did not increase the mitotic index, which supposes that genistein may arrest the cell cycle at G2 or early M. These results suggest that the G2-M arrest by genistein is a unique effect among flavonoids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caffeine overcomes genistein-induced G2/M cell cycle arrest in breast cancer cells.

Although inhibition of tumor cell growth by genistein is mediated by different types of cell cycle arrest, its regulation of genes related to the cell cycle is not clear. In this study, genistein caused a concentration-dependent growth inhibition in the hormone-independent cell line MDA-MB-435S. Flow cytometric analysis showed that genistein induced a concentration-dependent accumulation of cel...

متن کامل

Para-nonylphenol Toxicity Induces Oxidative Stress and Arrests the Cell Cycle in Mesenchymal Stem Cells of Bone Marrow

Background: The mechanism of para-nonylphenol (PNP) reducing the proliferation and differentiation of bone marrow mesenchymal stem cells (MSCs) is not known. The present study was designed to investigate the mechanism. Methods: MSCs were extracted under sterile condition from Wistar rat and cultured in DMEM, containing 15 % FBS and penicillin/streptomycin until the 3rd passage, then cells we...

متن کامل

Inhibition of CBF/NF-Y mediated transcription activation arrests cells at G2/M phase and suppresses expression of genes activated at G2/M phase of the cell cycle

Previous studies showed that binding of the CBF/NF-Y (CBF) transcription factor to cellular promoters is essential for cell proliferation. This observation prompted us to investigate the function of CBF in relation to cell cycle progression and in cell-cycle-regulated transcription. In this study, we used a tetracycline-inducible adenoviral vector to express a truncated CBF-B subunit, Bdbd, lac...

متن کامل

Bcl-2 overexpression sensitizes MCF-7 cells to genistein by multiple mechanisms.

Genistein is a soy isoflavone with anti-tumor properties. Genistein-induced apoptosis involves Bcl-2 downregulation. However, overexpression of Bcl-2 in breast cancer has been associated with better prognosis and response to hormonal therapy. To examine genistein's effect on breast cancer cells with different Bcl-2 levels, we established control (MCF-7/PV) and Bcl-2 overexpressing MCF-7 (MCF-7/...

متن کامل

Genistein induces G2/M cell cycle arrest and apoptosis via ATM/p53-dependent pathway in human colon cancer cells

Soybean isoflavones have been used as a potential preventive agent in anticancer research for many years. Genistein is one of the most active flavonoids in soybeans. Accumulating evidence suggests that genistein alters a variety of biological processes in estrogen-related malignancies, such as breast and prostate cancers. However, the molecular mechanism of genistein in the prevention of human ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 53 6  شماره 

صفحات  -

تاریخ انتشار 1993